Online Textbook Practice Tests 1500 Calculus Problems Solved About

Chapter 6 Challenge Problems Solutions

EXERCISE 1
The trigonometric substitution \(x + 1 = c \sec \theta,\) where \(c \ne 0,\) can be used to evaluate \[\int_0^2 \frac{(x + 1)^2 - c^2}{x + 1} \di x \pd\] But for some values of \(c,\) you cannot proceed to convert the bounds to be in terms of \(\theta.\) Find these values of \(c.\)

SOLUTION In performing the substitution \(x + 1 = c \sec \theta,\) we attain the following bound changes.
  • Lower Bound When \(x = 0,\) we have \(1 = c \sec \theta,\) or \(\sec \theta = 1/c.\)
  • Upper Bound When \(x = 2,\) we have \(3 = c \sec \theta,\) or \(\sec \theta = 3/c.\)
But the range of secant is \((-\infty, -1] \cup [1, \infty).\) Thus, we must avoid \(1/c\) or \(3/c\) lying within \((-1, 1).\) For the lower bound \(x = 0,\) we have \[\abs{\frac{1}{c}} \lt 1 \iffArrow \abs{c} \gt 1 \pd\] Additionally, for the upper bound \(x = 2,\) \[\abs{\frac{3}{c}} \lt 1 \iffArrow \abs{c} \gt 3 \pd\] The intersection of the sets \(\{c \mid \abs c \gt 1\}\) and \(\{c \mid \abs c \gt 3\}\) is \[\boxed{(-\infty, -1) \cup (1, \infty)}\] In this case, we must antidifferentiate the integrand and return to working with \(x\)—not \(\theta.\)
EXERCISE 2
For what values of \(q\) does \(\int_0^1 \dd x/x^q\) converge?

SOLUTION The integral is \[ \ba \lim_{t \to 0^+} \int_t^1 x^{-q} \di x &= \lim_{t \to 0^+} \frac{x^{1 - q}}{1 - q} \intEval_t^1 \nl &= \frac{1}{1 - q} - \lim_{t \to 0^+} \frac{t^{1 - q}}{1 - q} \pd \ea \] If \(q \lt 1,\) then \(1 - q\) is positive and so \(t^{1 - q}/(1 - q) \to 0\) as \(t \to 0^+.\) Then the integral converges. But if \(q \gt 1,\) then \(1 - q\) is negative and so \(t^{1 - q}/(1 - q) \to \infty\) as \(t \to 0^+,\) meaning the integral diverges. And if \(q = 1,\) then the integral becomes \[ \ba \lim_{t \to 0^+} \ln x \intEval_t^1 &= 0 - \lim_{t \to 0^+} \ln t \nl &= \infty \pd \ea \] Accordingly, \(\int_0^1 \dd x/x^q\) converges for \(\boxed{q \lt 1}.\)
EXERCISE 3
For
\[\ds \int \frac{\tan^3 x + \tan x}{6 \tan^2 x - 2} \di x\]
evaluate the integral.

SOLUTION By factoring the numerator, the integral becomes \[ \int \frac{\tan x (\tan^2 x + 1)}{6 \tan^2 x - 2} \di x = \int \frac{\tan x \sec^2 x}{6 \tan^2 x - 2} \di x \pd \] Substituting \(u = 6 \tan^2 x - 2,\) we attain \(\dd u = 12 \tan x \sec^2 x \di x\) and so the integral becomes \[ \ba \int \frac{1}{12 u} \di u &= \tfrac{1}{12} \ln \abs u + C \nl &= \boxed{\tfrac{1}{12} \ln \abs{6 \tan^2 x - 2} + C} \ea \]
EXERCISE 4
For
\[\ds \int \frac{1}{\sin^6 x + \cos^6 x} \di x\]
evaluate the integral.

SOLUTION Multiplying the numerator and denominator each by \(\sec^6 x\) yields \[\int \frac{\sec^6 x}{\tan^6 x + 1} \di x \pd\] Since the power of secant is even, we can conserve an extra \(\sec^2 x\) factor, similar to the strategy in Section 6.2. Because \(\sec^2 x\) \(= \tan^2 x + 1,\) we have \[\int \frac{\sec^4 x \sec^2 x}{\tan^6 x + 1} \di x = \int \frac{(\tan^2 x + 1)^2 \sec^2 x}{\tan^6 x + 1} \di x \pd\] Substituting \(u = \tan x,\) we attain \(\dd u = \sec^2 x \di x\) and so the integral becomes \[ \ba \int \frac{(u^2 + 1)^2}{u^6 + 1} \di u &= \int \frac{(u^2 + 1)^2}{(u^2 + 1)(u^4 - u^2 + 1)} \di u \nl &= \int \frac{u^2 + 1}{u^4 - u^2 + 1} \di u \pd \ea \] Dividing the numerator and denominator each by \(u^2\) yields \[ \int \frac{1 + \dfrac{1}{\strut u^2}}{u^2 - 1 + \dfrac{\strut 1}{u^2}} \di u = \int \frac{1 + \dfrac{1}{\strut u^2}}{\par{u - \dfrac{1}{u}}^2 + 1} \di u \pd \] Letting \(v = u - 1/u,\) we get \(\dd v = (1 + 1/u^2) \di u\) and thus \[ \ba \int \frac{1}{v^2 + 1} \di v &= \atan v + C \nl &= \atan \par{u - \frac{1}{u}} + C \nl &= \atan \par{\tan x - \frac{1}{\tan x}} + C \nl &= \boxed{\atan \par{\tan x - \cot x} + C} \ea \]
EXERCISE 5
For
\[\ds \int \par{\cos^4 x - \sin^4 x} e^{\sqrt x} \sec 2x \sqrt x \di x\]
evaluate the integral.

SOLUTION While it appears menacing, the integrand can be drastically simplified. Note that \[ \ba \cos^4 x - \sin^4 x &= (\cos^2 x + \sin^2 x)(\cos^2 x - \sin^2 x) \nl &= \cos^2 x - \sin^2 x \nl &= \cos 2x \pd \ea \] Thus, the integral becomes \[\int \cos 2x e^{\sqrt x} \sec 2x \sqrt x \di x = \int \sqrt x \, e^{\sqrt x} \di x \pd\] Substituting \(t = \sqrt x,\) we get \(\dd t = 1/(2 \sqrt x) \di x\) \(= 1/2t \di x.\) Accordingly, \(\dd x = 2t \di t\) and so the integral becomes \[\int t e^t (2t) \di t = \int 2t^2 e^t \di t \pd\] Performing Integration by Parts (Section 6.1) with \[ \baat{2} u &= 2t^2 \lspace &\dd v &= e^t \di t \nl \dd u &= 4t \di t \lspace &v &= e^t \eaat \] yields \[2 t^2 e^t - \int 4t e^t \di t \pd\] We use Integration by Parts again with \[ \baat{2} u &= 4t \lspace &\dd v &= e^t \di t \nl \dd u &= 4 \di t \lspace &v &= e^t \cma \eaat \] attaining \[ \ba 2t^2 e^t - \par{4t e^t - \int 4 e^t \di t} &= 2t^2 e^t - \par{4t e^t - 4 e^t} + C \nl &= 2t^2 e^t - 4t e^t + 4e^t + C \nl &= \boxed{2x e^{\sqrt x} - 4 \sqrt x e^{\sqrt x} + 4 e^{\sqrt x} + C} \ea \]
EXERCISE 6
For
\[\ds \int \frac{e^{-3x}}{\sqrt{1 - e^{2x}}} \di x\]
evaluate the integral.

SOLUTION We first substitute \(u = e^x\) to get \(\dd u = e^x \di x\) \(= u \di x.\) Accordingly, \(\dd x = \dd u/u,\) so the integral becomes \[ \int \frac{u^{-3}}{\sqrt{1 - u^2}} \par{\frac{1}{u}} \di u = \int \frac{1}{u^4 \sqrt{1 - u^2}} \di u \pd \] Now we perform the trigonometric substitution \(u = \sin \theta;\) then \(\dd u = \cos \theta \di \theta.\) Doing so yields \[ \ba \int \frac{1}{\sin^4 \theta \sqrt{1 - \sin^2 \theta}} (\cos \theta) \di \theta &= \int \frac{1}{\sin^4 \theta \abs{\cos \theta}} (\cos \theta) \di \theta \nl &= \int \csc^4 \theta \di \theta \nl &= \int (\cot^2 \theta + 1) \csc^2 \theta \di \theta \pd \ea \] Substituting \(v = \cot \theta,\) we attain \(\dd v = -\csc^2 \theta \di \theta.\) Consequently, we attain \[ \ba -\int \par{v^2 + 1} \di v &= -\tfrac{1}{3} v^3 - v + C \nl &= -\tfrac{1}{3} \cot^3 \theta - \cot \theta + C \pd \ea \] But since \(u = \sin \theta,\) we have \(\cot \theta = \sqrt{1 - u^2}/u.\) Also remembering the initial substitution \(u = e^x,\) we get \[-\frac{1}{3} \par{\frac{\sqrt{1 - e^{2x}}}{e^x}}^3 - \frac{\sqrt{1 - e^{2x}}}{e^x} + C = \boxed{-\frac{(1 - e^{2x})^{3/2}}{3e^{3x}} - \frac{\sqrt{1 - e^{2x}}}{e^x} + C} \]
EXERCISE 7
For positive \(n,\) prove the reduction formula \[\int \cos^n \theta \di \theta = \frac{1}{n} \sin \theta \cos^{n - 1} \theta + \frac{n - 1}{n} \int \cos^{n - 2} \theta \di \theta \pd \]

SOLUTION Rewriting the integral as \(\int \cos^{n - 1} \theta \cos \theta \di \theta,\) we perform Integration by Parts with \[ \baat{2} u &= \cos^{n - 1} \theta \lspace &\dd v &= \cos \theta \di \theta \nl \dd u &= -(n - 1) \cos^{n - 2} \theta \sin \theta \di \theta \lspace &v &= \sin \theta \pd \eaat \] We then see \[ \ba \int \cos^n \theta \di \theta &= \sin \theta \cos^{n - 1} \theta + (n - 1) \int \sin^2 \theta \cos^{n - 2} \theta \di \theta \nl &= \sin \theta\cos^{n - 1} \theta + (n - 1) \int (1 - \cos^2 \theta) \cos^{n - 2} \theta \di \theta \nl &= \sin \theta\cos^{n - 1} \theta + (n - 1) \int \cos^{n - 2} \theta \di \theta - (n - 1)\int \cos^n \theta \di \theta \nl n \int \cos^n \theta \di \theta &= \sin \theta\cos^{n - 1} \theta + (n - 1) \int \cos^{n - 2} \theta \di \theta \nl \implies \int \cos^n \theta \di \theta &= \frac{1}{n} \sin \theta\cos^{n - 1} \theta + \frac{n - 1}{n} \int \cos^{n - 2} \theta \di \theta \cma \ea \] as requested.
EXERCISE 8
Letting \(n\) be a positive integer greater than \(2,\) prove that \[\int \sec^n x \di x = \frac{\sec^{n - 2} x \tan x}{n - 1} + \frac{n - 2}{n - 1} \int \sec^{n - 2} x \di x \pd\] (This formula is the power-reduction formula for secant.)

SOLUTION Since \(\sec^2 x\) is easy to integrate, let's break up the integral as \[\int \sec^n x \di x = \int \sec^{n - 2} x \sec^2 x \di x\] and perform Integration by Parts. We choose \[ \baat{2} u &= \sec^{n - 2} x \lspace &\dd v &= \sec^2 x \di x \nl \dd u &= (n - 2) \sec^{n - 3} x (\sec x \tan x) \di x \lspace &v &= \tan x \pd \nl &= (n - 2) \sec^{n - 2} x \tan x \di x \eaat \] So we have \[ \ba \int \sec^n x \di x &= \sec^{n - 2} x \tan x - (n - 2) \int \sec^{n - 2} x \tan^2 x \di x \nl &= \sec^{n - 2} x \tan x - (n - 2) \int \sec^{n - 2} x (\sec^2 x - 1) \di x \nl &= \sec^{n - 2} x \tan x - (n - 2) \int \sec^n x \di x + (n - 2) \int \sec^{n - 2} x \di x \pd \ea \] Adding \(\int \sec^{n - 2} x \di x\) to both sides yields \[ \ba (n - 1) \int \sec^n x \di x &= \sec^{n - 2} x \tan x + (n - 2) \int \sec^{n - 2} x \di x \nl \implies \int \sec^n x \di x &= \frac{\sec^{n - 2} x \tan x}{n - 1} + \frac{n - 2}{n - 1} \int \sec^{n - 2} x \di x \cma \ea \] as requested.
EXERCISE 9
For what values of \(c\) does \(\int_c^{2c} \frac{1}{x^2 - 8x + 16} \di x\) diverge?

SOLUTION By factoring the denominator, the integral becomes \[\int_c^{2c} \frac{1}{(x - 4)^2} \di x \pd\] The graph of \(y = 1/(x - 4)^2\) has a vertical asymptote at \(x = 4.\) For any \(a \lt 4 \lt b,\) observe that \[ \ba \int_4^b \frac{1}{(x - 4)^2} \di x &= \lim_{t \to 4^+} \int_t^b \frac{1}{(x - 4)^2} \di x \nl &= \lim_{t \to 4^+} \par{-\frac{1}{x - 4}} \intEval_t^b \nl &= \lim_{t \to 4^+} \par{\frac{1}{t - 4} - \frac{1}{b - 4}} \nl &= \infty \pd \ea \] Also, \[ \ba \int_a^4 \frac{1}{(x - 4)^2} \di x &= \lim_{t \to 4^-} \int_a^t \frac{1}{(x - 4)^2} \di x \nl &= \lim_{t \to 4^-} \par{-\frac{1}{x - 4}} \intEval_a^t \nl &= \lim_{t \to 4^-} \par{\frac{1}{a - 4} - \frac{1}{t - 4}} \nl &= \infty \pd \ea \] Thus, any integral whose bounds run through the vertical asymptote is divergent. Hence, the values of \(c\) must cross \(x = 4,\) meaning \(c \leq 4 \leq 2c.\) With \(4 \leq 2c,\) we have \(c \geq 2.\) Thus, we have \[ \ba \{c \mid c \geq 2 \text{ and } c \leq 4\} = \boxed{[2, 4]} \ea \]
EXERCISE 10
By factoring the denominator as \(x (x^{2023} - 1)\) and splitting the integrand into two fractions, evaluate \[\int \frac{1}{x^{2024} - x} \di x \pd\]

SOLUTION Observe that \[\frac{1}{x^{2024} - x} = \frac{-1}{x} + \frac{x^{2022}}{x^{2023} - 1} \pd\] By substituting \(u = x^{2023} - 1,\) we get \(\dd u = 2023 x^{2022} \di x;\) thus, we see \[ \ba \int \frac{x^{2022}}{x^{2023} - 1} \di x &= \int \frac{1}{2023 u} \di u \nl &= \tfrac{1}{2023} \ln \abs u + C \nl &= \tfrac{1}{2023} \ln \abs{x^{2023} - 1} + C \pd \ea \] Hence, we have \[ \int \frac{1}{x^{2024} - x} \di x = \boxed{-\ln \abs x + \tfrac{1}{2023} \ln \abs{x^{2023} - 1} + C} \]
EXERCISE 11
The convolution operation is defined as \[(u \circledast v)(x) = \int_{-\infty}^\infty u(y) v(x - y) \di y \pd\] By using the change of variable \(t = x - y,\) show that the convolution operation is commutative; that is, \[(u \circledast v)(x) = (v \circledast u)(x) \pd\] Assume \(u\) and \(v\) are integrable functions such that the improper integral converges.

SOLUTION Note that \(y\) is simply a dummy variable; the convolutions of \(u\) and \(v\) are functions of \(x.\) Our goal is to show that \((u \circledast v)(x) = (v \circledast u)(x),\) or \[ \ba \underbrace{\int_{-\infty}^\infty u(y) v(x - y) \di y}_{(u \circledast v)(x)} &= \int_{-\infty}^\infty v(y) u(x - y) \di y \nl &= \int_{-\infty}^\infty u(x - y) v(y) \di y \pd \ea \] We use a change of variable \(t = x - y.\) Then \(y = x - t\) and \(\dd y = -\dd t.\) In addition, when \(y = -\infty,\) \(t = \infty;\) when \(y = \infty,\) \(t = -\infty.\) Hence, \[ \ba \underbrace{\int_{-\infty}^\infty u(y) v(x - y) \di y}_{(u \circledast v)(x)} &= \int_\infty^{-\infty} u(x - t) v(t) (-1) \di t \nl &= \int_{-\infty}^{\infty} u(x - t) v(t) \di t \nl &= \int_{-\infty}^\infty v(t) u(x - t) \di t \nl &= (v \circledast u)(x) \cma \ea \] where the last step is true because \(t\) is simply a dummy variable. Hence, \[ (u \circledast v)(x) = (v \circledast u)(x) \cma \] so convolution is commutative.
EXERCISE 12
For any integer \(n \geq 1,\) develop a formula for \(\int x^n e^x \di x.\)

SOLUTION Let's perform Integration by Parts with \[ \baat{2} u &= x^n \lspace &\dd v &= e^x \di x \nl \dd u &= n x^{n - 1} \di x \lspace &v &= e^x \pd \eaat \] Doing so gives \[\int x^n e^x \di x = x^n e^x - \int n x^{n - 1} e^x \di x \pd\] Performing Integration by Parts again with \[ \baat{2} u &= n x^{n - 1} \lspace &\dd v &= e^x \di x \nl \dd u &= n (n - 1) x^{n - 2} \di x \lspace &v &= e^x \eaat \] shows \[\int x^n e^x \di x = x^n e^x - n x^{n - 1} e^x + \int n (n - 1) x^{n - 2} e^x \di x \pd\] Continuing this pattern, we have \[ \ba \int x^n e^x \di x &= \small x^n e^x - n x^{n - 1} e^x + n (n - 1) (n - 2) x^{n - 2} e^x - n (n - 1)(n - 2)(n - 3) x^{n - 3} e^x + \cdots \nl &= \boxed{\sum_{i = 0}^n (-1)^i \, x^{n - i} \, e^x \frac{n!}{(n - i)!}} \ea \] Note that \(0! = 1.\)
EXERCISE 13
Figure 1
A uniform, long, positively charged rod of length \(L\) holds a charge \(Q.\) Let the \(x\)-axis be positioned through the rod spanning from \(x = 0\) to \(x = L.\) Point \(P\) is located a distance \(d\) above the left end of the rod. (See Figure 1.) Let \(V\) be the electric potential at \(P.\) At any \(0 \leq x \leq L,\) it follows that \[\frac{\dd V}{\dd x} = \frac{k Q}{L \sqrt{x^2 + d^2}} \cma\] where \(k\) is a constant. The total electric potential at \(P\) is given by integrating the right expression from \(x = 0\) to \(x = L.\) Determine this electric potential, \(V.\)

SOLUTION The integral to evaluate is \[ \ba V &= \int_0^L \frac{kQ}{L \sqrt{x^2 + d^2}} \di x \nl &= \frac{kQ}{L} \int_0^L \frac{1}{\sqrt{x^2 + d^2}} \di x \pd \ea \] We immediately substitute \(x = d \tan \theta,\) \(-\pi/2 \lt \theta \lt \pi/2;\) then \(\dd x = d \sec^2 \theta \di \theta.\) We now change the bounds.
  • Lower Bound When \(x = 0,\) we have \(0 = d \tan \theta,\) so \(\theta = 0.\)
  • Upper Bound When \(x = L,\) we have \(L = d \tan \theta,\) so \(\theta = \atan(L/d).\) For convenience, let \(\beta = \atan(L/d).\)
Since \(L\) and \(d\) are both positive, \(\beta = \atan(L/d)\) must be positive and less than \(\pi/2.\) Accordingly, secant is positive on \([0, \beta].\) Hence, we attain \[ \ba V &= \frac{kQ}{L} \int_0^\beta \frac{1}{\sqrt{d^2 \tan^2 \theta + d^2}} (d \sec^2 \theta) \di \theta \nl &= \frac{kQ}{L} \int_0^\beta \frac{d \sec^2 \theta}{d \abs{\sec \theta}} \di \theta \nl &= \frac{kQ}{L} \int_0^\beta \sec \theta \di \theta \nl &= \frac{kQ}{L} \ln \abs{\sec \theta + \tan \theta} \intEval_0^\beta \nl &= \frac{kQ}{L} \ln \abs{\sec \beta + \tan \beta} - 0 \pd \ea \] But we defined \(\tan \beta = L/d,\) so by the Pythagorean identity we have \[\sec \beta = \sqrt{\par{\frac{L}{d}}^2 + 1} = \sqrt{\frac{L^2 + d^2}{d^2}} = \frac{\sqrt{L^2 + d^2}}{d} \cma\] where the positive solution is appropriate. Substituting expressions yields \[ \ba V &= \frac{kQ}{L} \ln \abs{\frac{\sqrt{L^2 + d^2}}{d} + \frac{L}{d}} \nl &= \boxed{\frac{kQ}{L} \ln \abs{\frac{L + \sqrt{L^2 + d^2}}{d}}} \ea \]
EXERCISE 14
A boat initially lies \(20\) feet below a lighthouse. The boat then sails along the flat ocean until the angle of elevation to the lighthouse is \(45 \degree.\) During the boat's journey, what is its average distance to the lighthouse? How far has the boat sailed when it attains this average distance?

SOLUTION
trig-sub-ex-avg-distance.jpg
The vertical distance between the boat and lighthouse is \(20 \un{ft}.\) Let \(x\) be the horizontal distance between the boat and lighthouse. Then by the Pythagorean Theorem, the distance between the boat and lighthouse is \[d(x) = \sqrt{x^2 + 20^2} = \sqrt{x^2 + 400} \pd\] Once the angle of elevation becomes \(45 \degree,\) the horizontal distance is \(20 \un{ft}.\) Hence, the boat's journey is modeled by \(0 \leq x \leq 20,\) on which the average value of \(d\) (Section 5.6) is \[ \ba \avg d &= \frac{1}{20 - 0} \int_0^{20} d(x) \di x \nl &= \tfrac{1}{20} \int_0^{20} \sqrt{x^2 + 400} \di x \pd \ea \] To evaluate the integral, we substitute \(x = 20 \tan \theta;\) then \(\dd x = 20 \sec^2 \theta \di \theta.\) When \(x = 0,\) \(\theta = 0;\) when \(x = 20,\) \(\theta = \pi/4.\) We therefore have \[ \ba \avg d &= \tfrac{1}{20} \int_0^{\pi/4} \sqrt{400 \tan^2 \theta + 400} \, (20 \sec^2 \theta) \di \theta \nl &= \int_0^{\pi/4} \sqrt{400 \sec^2 \theta} \, \sec^2 \theta \di \theta \nl &= \int_0^{\pi/4} \abs{20 \sec \theta} \sec^2 \theta \di \theta \nl &= 20 \int_0^{\pi/4} \sec^3 \theta \di \theta \pd \ea \] The result of Example 6.2-12 yields \[ \ba \avg d &= 20 \par{\tfrac{1}{2} \sec \theta \tan \theta + \tfrac{1}{2} \ln \abs{\sec \theta + \tan \theta}} \intEval_0^{\pi/4} \nl &= 10 \par{\sqrt 2} (1) + 10 \ln \abs{\sqrt 2 + 1} \nl &= \boxed{10 \sqrt 2 + 10 \ln \par{\sqrt 2 + 1}} \approx 22.956 \pd \ea \] Since \(d\) is continuous on \([0, 20],\) the Mean Value Theorem for Integrals guarantees a value \(c \in [0, 20]\) such that \(d(c) = \avg d.\) Solving gives \[ \ba \sqrt{c^2 + 400} &= 10 \sqrt 2 + 10 \ln \par{\sqrt 2 + 1} \nl \implies c &= \boxed{\sqrt{\parbr{10 \sqrt 2 + 10 \ln \par{\sqrt 2 + 1}}^2 - 400}} \approx 11.268 \un{ft} \pd \ea \] Thus, after the boat has sailed \(11.268 \un{ft},\) it reaches its average distance \(\avg d\) to the lighthouse.
EXERCISE 15
Figure 2
A box located \(5\) feet away from a wall is pinned at a spot \(3\) feet above. The applied pull along the rope is maintained at \(T = 50\) pounds. The box is then pushed away from the wall; at any moment, the box has traveled \(x\) feet. (See Figure 2.) After sliding \(1\) foot, the box stops due to the opposing rope force. By assuming that \(T\) is constant, the work done by the rope on the box is \[W = \int_0^1 -T \cos \theta \di x \cma\] where \(\theta\) is the rope's variable angle of elevation. Calculate \(W.\)

SOLUTION Note that \(\theta\) is not constant, so we cannot take \(\cos \theta\) out of the integral. Instead, \(\cos \theta\) represents a function of \(x \col\) \[\cos \theta = \frac{x + 5}{\sqrt{(x + 5)^2 + 3^2}} = \frac{x + 5}{\sqrt{(x + 5)^2 + 9}} \pd\] So the work is \[ \ba W &= \int_0^1 -T \par{\frac{x + 5}{\sqrt{(x + 5)^2 + 9}}} \di x \nl &= -50 \int_0^1 \frac{x + 5}{\sqrt{(x + 5)^2 + 9}} \di x \pd \ea \] Substituting \(x + 5 = 3 \tan \theta,\) we see \(x = 3 \tan \theta - 5\) and so \(\dd x = 3 \sec^2 \theta \di \theta.\) When \(x = 0,\) \(\theta = \atan(5/3);\) when \(x = 1,\) \(\theta = \atan 2.\) For organization, let \(\alpha = \atan(5/3)\) and \(\beta = \atan 2.\) Therefore, the work is \[ \ba W &= -50 \int_\alpha^\beta \frac{3 \tan \theta}{\sqrt{9 \tan^2 \theta + 9}} \, (3 \sec^2 \theta) \di \theta \nl &= -50 \int_\alpha^\beta \frac{3 \tan \theta}{\abs{3 \sec \theta}} (3 \sec^2 \theta) \di \theta \nl &= -150 \int_\alpha^\beta \sec \theta \tan \theta \di \theta \nl &= -150 \sec \theta \intEval_\alpha^\beta \nl &= 150 \sec \alpha - 150 \sec \beta \pd \ea \] Since \(\alpha = \atan(5/3),\) we have \(\tan \alpha = 5/3\) and so \[ \ba \sec^2 \alpha &= \tan^2 \alpha + 1 \nl &= \par{\tfrac{5}{3}}^2 + 1 \nl &= \tfrac{34}{9} \pd \ea \] Thus, \(\sec \alpha\) \(= \sqrt{34}/3.\) [We use the positive solution, as \(-\pi/2 \lt \underbrace{\alpha}_{\atan \tfrac{5}{3}} \lt \pi/2\) and so \(\sec \alpha \gt 0.\)] Likewise, because \(\beta = \atan 2,\) we have \(\tan \beta = 2\) and thus \[ \ba \sec^2 \beta &= \tan^2 \beta + 1 \nl &= (2)^2 + 1 \nl &= 5 \pd \ea \] Thus, \(\sec \beta\) \(= \sqrt 5.\) [We use the positive solution, as \(-\pi/2 \lt \underbrace{\beta}_{\atan 2} \lt \pi/2\) and so \(\sec \beta \gt 0.\)] Accordingly, the work is \[ \ba W &= 150 \par{\frac{\sqrt{34}}{3}} - 150 \par{\sqrt 5} \nl &= \boxed{50 \sqrt{34} - 150 \sqrt{5}} \nl &\approx -43.863 \un{ft-lb} \ea \] Because the work is negative, the box has lost \(43.863 \un{ft-lb}\) of energy after sliding \(1 \un{ft}.\)